Measuring the Newtonian constant of gravitation with a differential free-fall gradiometer: a feasibility study.
نویسندگان
چکیده
An original setup is presented to measure the Newtonian Constant of Gravitation G. It is based on the same principle as used in ballistic absolute gravimeters. The differential acceleration of three simultaneously freely falling test masses is measured in order to determine G. In this paper, a description of the experimental setup is presented. A detailed uncertainty budget estimates the relative uncertainty to be of the order of 5.3 × 10(-4), however with some improvements a relative uncertainty in G of one part in 10(4) could be feasible.
منابع مشابه
Simple pendulum determination of the gravitational constant.
We determined the Newtonian constant of gravitation G by interferometrically measuring the change in spacing between two free-hanging pendulum masses caused by the gravitational field from large tungsten source masses. We find a value for G of (6.672 34±0.000 14)×10(-11) m3 kg(-1) s(-2). This value is in good agreement with the 1986 Committee on Data for Science and Technology (CODATA) value...
متن کاملMeasuring the Newtonian constant of gravitation G with an atomic interferometer.
We have recently completed a measurement of the Newtonian constant of gravitation G using atomic interferometry. Our result is G=6.67191(77)(62)×10(-11) m(3) kg(-1) s(-2) where the numbers in parenthesis are the type A and type B standard uncertainties, respectively. An evaluation of the measurement uncertainty is presented and the perspectives for improvement are discussed. Our result is appro...
متن کاملRetarded gravitation theory
We propose a Lorentz-covariant theory of gravity, and explain its theoretical origins in the problem of time in Newtonian physics. In this retarded gravitation theory (RGT), the gravitational force depends upon both retarded position and velocity, and the equations of motion are time-asymmetric retarded functional differential equations. We explicitly solve these equations, under simplifying as...
متن کاملAtom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G
We developed a gravity-gradiometer based on atom interferometry for the determination of the Newtonian gravitational constant G. The apparatus, combining a Rb fountain, Raman interferometry and a juggling scheme for fast launch of two atomic clouds, was specifically designed to reduce possible systematic effects. We present instrument performances and show that the sensor is able to detect the ...
متن کاملBulk Viscous Bianchi Type VI0 Cosmological Model in the Self-creation Theory of Gravitation and in the General Theory of Relativity
In the second self-creation theory of gravitation and in the general theory of relativity, Bianchi type VI0 cosmological model in the presence of viscous fluid is studied. An exact solution of the field equations is given by considering the cosmological model yields a constant decelerations parameter q=constant and the coefficients of the metric are taken as A(t)=[c1t+c<su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Review of scientific instruments
دوره 85 4 شماره
صفحات -
تاریخ انتشار 2014